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Abstract. The stability of a local laminar shear flow and its transition into turbulent flow is considered as a local
phenomenon. This transition may remain local, in which case the flow field is partially laminar and partially
turbulent, or it may spread and make the whole field turbulent. One of the applications of this analysis is the
prediction of local heat-convection rates, which are enhanced by local turbulence. Another application is in
heart-lung blood pumps, where excessive shear rates are detrimental to red blood cells.

The analysis is Lagrangian, which concentrates on the stability of a fluid particle in maintaining its position in
a laminar shear flow. This stability is shown to depend on the magnitude of a non-dimensional parameter, namely
the local Reynolds number Re;, = ha?/v where A is the local shear rate, a is the particle radius and v is the fluid’s
kinematic viscosity. It is shown that when, locally, Re; > 530, the flow is, locally, unstable. The application of
this criterion is simple and direct, and in certain cases it can be shown that the resulting unstable flow is indeed
turbulent.

Because the analysis relies on an experimental coefficient which has been obtained for a rigid sphere, rather than
for a fluid particle, the criterion is introduced at this stage as a conjecture. Several examples are presented which
demonstrate the criterion’s ability to yield correct predictions for instability.

1. Introduction

The distinction between laminar and turbulent flows in the field of transport phenomena is
made at least since the famous Reynolds experiment. Reynolds himself set the magnitude of
a non-dimensional parameter, later denoted the Reynolds number, as a criterion for the tran-
sition from laminar to turbulent flow in a pipe. Since then, Reynolds numbers were defined
for many other flows, and were shown to be reliable predictors of transition in those flows.

Turbulent flows have been treated as random statistical phenomena, and as manifestation
of hydrodynamic instability. Statistical, analytical, numerical and experimental methods are
used to describe and to correlate these phenomena. It is generally accepted that turbulence
starts only after the laminar flow becomes unstable; this is recognized as a necessary
condition, although not a sufficient one, because laminar secondary flows may also exist.

This introduction cannot survey the field of turbulent flow. Such a survey would be a
paper in its own right, or a chapter in a book. Still one quite general observation is made:
there are flows in which parts of the domain are laminar and parts of it are turbulent. Yet
no terms such as local instability, or local turbulence, or local turbulence predictor, seem to
have been used.

Transport rates are generally higher in turbulent flows than in laminar ones. When only
part of the flow field is turbulent the transport rates in this part may become higher.
The engineering implication of this possibility is important, e.g., in the local cooling of
some electronic equipment, where high transport rates are beneficial, or in the clean-room
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construction of microcircuits, where very low transport rates are essential. Lately it has been
found that shear rates which exceed a certain magnitude cause deterioration of red blood
cells, and the flow field in blood pumps must not have even local regions of such damaging
flows. It has therefore become quite desirable to define and derive such a local criterion for
flow instabilities.

In addition to these practical needs the derived local criterion exhibits two additional
apparent advantages which contribute to the motivation for its development:

(i) Clearly, instability and turbulence are not identical phenomena. The current Eulerian
procedure to predict the onset of instability requires that the flow field be first solved under
the assumption that it is laminar. Then its stability is checked. When found unstable the
resulting flow is either turbulent, or a so-called secondary laminar flow, with the decision
depending on what other evidence exists. The criterion presented here uses the Lagrangian
approach. It also needs the preliminary laminar-flow solution to which it is applied; but then,
after instability has been predicted, the criterion may be easily applied again to the resulting
turbulent mean-velocity profile. This profile is then checked as to whether it can support
itself as a turbulent flow. If it can, then the flow is definitely turbulent.

(ii) The other advantage is that in the Eulerian stability analysis each new flow field must
be treated anew, resulting in new characteristic equations. The perturbations used must be
shown to constitute a complete series, or the flow cannot be proved stable. The local predictor
obtained here from the Lagrangian analysis is the same for all flows, and its application
differs from one flow to another on an algebraic level only. The perturbations used in its
development do form a complete series. Furthermore, it is applied algebraically in a two-
dimensional fashion, in the most sensitive plane, but the phenomena need not be limited to
two dimensions; this is because the model of the instability is that of a moving sphere.

Finally, two of the major drawbacks of the local predictor must be mentioned:

(i) It applies to shear instabilities only, and when other instability mechanisms are involved
some further development is required.

(ii) Its analysis relies on a coeflicient obtained experimentally for a rigid sphere, and not for
a “‘sphere made of fluid”.

It is felt that at this stage the results should be presented as a conjecture, until further support
for this approach has been accumulated.

As a general observation it is noted that when a flow is checked for instability and shown
to be unstable, it is unstable; when shown to be stable, however, it may still be unstable,
unless the criterion is proved to exhaust all forms of instability. In this sense any additional
criterion is a contribution.

2. Analysis

Let the velocity field in a laminar flow be given by
q = iU + jV,

where U is a shear flow in the x direction,

U = hy, §))
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Fig. 1. Fluid particle and coordinates attached to it.
and V is a small sinusoidal perturbation in the y direction, superimposed on the shear flow,
V = ev(y)exp {i(wt + kx)} )

with e <€ 1.

Consider a fluid particle in the flow, and let an auxiliary coordinate system move with the
particle, staying parallel to the original inertial coordinates. The flow as seen in this auxiliary
system is shown in Fig. 1. The small fluid particle rotates with the angular velocity

1dU
=39 &)

Let the coordinates of the fluid particle be X and Y. Because of the perturbation velocity V,
the fluid particle changes its Y coordinate. As long as the time mean-value of Y, however,
remains the same, the flow is considered stable and remains laminar. Once the value of ¥
changes monotonically by a finite amount the flow becomes unstable and transition to
turbulence occurs. A criterion for this transition is now sought. The equations of motion for
the small fluid particle are put in the form

d&?x dx
a7 = A(U‘ E)’

&y

“4)
dy dXx
T A(“a) +L<U'a>’
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where A is ““a linear drag coefficient™, and L is ““a linear lift coefficient”. Both 4 and L are
further considered later.
Equations (1) to (4) yield

X a(hr -2,

dr dt
Q)
2 d
% = Alev(Y) exp {i(wt + kX)}] + L (hY - d—f),
with the initial conditions
Y=Y,»,X=O,(:1—I},=U=hY atr = 0. (6)

The oscillatory perturbation is small, and a solution is sought as a series expansion
in g

X = X;+eXi+ ..., Y =Y, +eY +.... @)
The zeroth approximation to (5) is

dx, dy,
4o _ il U 8
dr h¥o, dr 0, ®)

with the initial conditions

Y, =Y, X, =0, att=0, )
and the zeroth approximation to the solution is

Y, = Y, X, = hY,L (10)

The first-order approximation to (5), using (10), becomes

—d—tz—+A-aT—AhY, = 0,

1)
2
Linfl + A4 dr, — LhY, + Liiﬁ = Av, exp {i(wt + khY,1)},

ds dt dr
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in which v, = 2(Y,). The second equation (11) is rearranged,

dx, 1d’Y, 4dy, A .
ot S 280 Ly + 2 1),
dt L d# La t P L %P (io0)

an.d differentiated,

a2 X, L&y, Ady,  dy, o4 i)
—_ = A —— ———— w —
ds L df L d# ds L P ’

with @ = @ + khY,, and both expressions are substituted in the first equation (11) to
yield

3 2 Y
ddt);‘ + 24 ddt);‘ + (4% — Lh) fid—t‘ = i@Av, exp (idt) + A*v, exp (id1). (12)

The homogeneous part of (12) has a solution of the form
Yy = exp(Q0)

and for
Q >0, or Real(Q) > 0,

the flow becomes unstable and turbulence starts.
The characteristic equation for Q, from the homogeneous part of (12), is

QO + 240Q° + (4> — Lh)Q = 0, (13)
with the solutions

o =0 @9, = —A—\/L_h,

and the important one

Q, = —A4+ JLh. (14)

It is noted that if instead of y-wise oscillations, (2), the perturbations are assumed to
oscillate in the x direction, exactly the same analysis leads to another equation (12) which
differs from the one obtained here only by its right-hand side. The homogeneous part of the
equation remains the same, and therefore the same criterion for stability and transition to
turbulence applies.

The criterion for instability is

0, >0,
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and (14) thus requires
Lh > A*. (15)
The criterion has come out in terms of 4 and L, which therefore merit further consideration.
Assume the fluid particle to have the shape of a cylinder, with radius a and length b. The
lift force on such a cylinder is given by [1, 2]
naboU'T (16)

with g the fluid density, U’ the streaming velocity, and I' the circulation. For the rotating
cylinder, (1) and (3) yield

I' = 2raQ} = mnah.

But, using L as it appears in (4), where LU’ is the lift force per total mass of the particle,
this becomes

L = nh amn
The drag force on the cylinder is conveniently expressed as [1, 3]
nabC, - 1oU" (18)

with C,, the drag coefficient. But, using A as it appears in (4), where AU is the drag force
per total mass of the cylinder, this becomes

A = (UGCy)2a) = (vCp Rey)/(4a?) (19)
where
Re, = aU’)fv (20)

is a Reynolds number defined for the streaming velocity U’ and v is the kinematic viscosity.
Substitution of (17) and (19) in the criterion for instability, (15), yields a new form for the
criterion

h@jv > Cp Rey /(4m) = 0.141 C, Rey.. @1

The analysis leading from (16) to (21) can be repeated under the assumption that the fluid
particle has the shape of a sphere. Equation (16) is still assumed to hold differentially, and is
therefore integrated for the sphere. Equation (21) still emerges as the criterion for instability,
but with the constant 0.141 replaced by another constant, 0.106.

Now suppose the criterion for instability, (21), is satisfied. This means transition to
turbulence. The flow now becomes turbulent, with the turbulent disturbances emerging from
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the fluid particle. The product

C, Rey,
in (21) is, therefore, C, at the transition to turbulence multiplied by Re,. at the transition to
turbulence*. For the cylindrical shape, this product is 10000 {4], while for the spherical shape
%t is 5000 [4]. Inserting these values into (21), the final form of the criterion for local instability
is

hd®jv > 1410 (22)
for particles of cylindrical shape, and

ha’/v > 530 (23)
for spherical particles. Because (23) is less restrictive than (22), it is (23) which must be used
as the local criterion for instability.
3. Examples
3.1. Poiseuille flow in a pipe
The velocity profile is

u = 2a[l — (r/RY],

where i is the mean velocity, r is the radial coordinate to the center of the fluid particle, and
R is the radius of the pipe. The local shear is

h = 4ur/R*.
The pipe-flow Reynolds number is
Re = 2aR}v,
and the left-hand side of (23) becomes
hd?lv = 4ar(a/R?/v = 2(r/R)(a/r)’ Re.
For geometrical reasons, since the particle must be inside the pipe,

r+a< R,

* At least part of the flow must be turbulent, and Re,. is taken at 10°.
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Table 1. Transition Reynolds numbers in Poiseuille flow

Assumed particle size

a/RoralY = 0.5 0.4 0.3 0.2 0.1
r/RorylY = 0.5 0.6 0.7 0.8 0.9
Pipe Poisecuille flow 2120 2670 4206 8281 29 444
Plane Poiseuille flow 2827 3680 5608 11041 39259

and because this particle is assumed not to overlap the center of the pipe,
a < R/2.

Under these restrictions the highest value attainable by ka?/v is for a = R/2, withr = R/2.
Equation (23) now yields

Re = 4-530 = 2120

More values of the transition Reynolds number Re, for other assumed values of a/R and r/R,
are presented in Table 1.

3.2. Plane Poiseuille flow

An analysis similar to the one for the pipe Poiseuille flow leads to
ha’lv = (3/2)(y/Y)(a/Y)" Re,

where Y is half the distance between the two plates, and y is measured from the centerline
between the plates. Fora = Y/2,and y = Y/2,

Re = (4/3)-4-530 = 2827.
Again, more values are presented in Table 1.

Comparison with published data

Experimental values for the transition Reynolds number for the Poiseuille pipe-flow range
between Re =_2000 for flows with induced disturbances at the entrance to the pipe, up to
Re = 13000 (and even higher values) for very smooth pipes under very quiescent conditions
have been given in [5]). The values presented in Table 1 for this flow, and in particular the
smallest value of 2120, seem to compare favorably with these experimental results.

It is interesting to note that this pipe flow is believed to be linearly stable [6], and that it
took a fully non-linear theory and three-dimensional perturbations [6] to find its modes of
instability, and that by the application of a CRAY computer. There is no contradiction
between that non-linearity and the criterion used in this paper, because that non-linearity
may well be hidden in the use of the drag coefficients here. However, assuming both methods
to be correct, this seems to recommend the use of the one suggested here whenever possible,
because of its directness and simplicity.
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Computed values for the plane Poiseuille flow [7] indicate the value 2800 for the transition
Reynolds number, which is indeed close to the value 2827 obtained here. However, this value
has been obtained [7] applying two-dimensional perturbations. The application of three-
dimensional perturbations lowered the transition to Re < 500. The implication is that the
three-dimensional transition is more involved than a simple shear-instability phenomenon.

3.3. Boundary layer in parallel flow over a flat plate

The boundary-layer thickness in laminar flow may be expressed as [4]
8/x = 5/Rel?,

and the velocity profile may be approximated by [4]

u = UlB/2)(y/d) — A/2)(»/6)],

from which
h = @21 — (y/6)].
Hence
ha'lv = (15/2) Re}? (al6)[l — (¥/6)’].

For geometrical reasons, y + a < 6 and y > a. Under these constrains the highest value
attainable by ha’/v is for y = a = §/2, which is

ha’/v = (45/32) Re!?,

and (23) yields the transition criterion Re, = 142045. More values for Re, are computed
under the assumption that a < /2, i.e., that the fluid particle is smaller than the thickness
of the boundary layer. These values are presented in Table 2.

We choose this example to illustrate another point mentioned in the introduction, that of
the decision whether the indicated instability leads to turbulence. To do this, we view
turbulence as a state in which the turbulent disturbance velocities, ', " and w’, must be
continuously produced, i.e., the mean-velocity profile in the turbulent flow must indicate
instability and thus pump energy into these disturbance velocities. We must therefore check
now the turbulent boundary-layer flow for stability. A certain transition Reynolds number
is expected.

Table 2. Transition Reynolds numbers in boundary-layer flow

Assumed particle size

a/lRoralY = 0.5 04 0.3 0.2
riRory/Y = 0.5 0.6 0.7 0.8
Laminar B.L. flow 142 045 476 244 23 x 10° 24.1 x 10

Turbulent B.L. flow 260360 416310 1.3 x 108 6.9 x 10°
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Now for

Re < Re

XLaminar XTurbulent >

the laminar flow is indeed unstable, as shown by the analysis. The flow, however, cannot
maintain its turbulence, because the mean turbulent velocity does not supply the needed
energy. Such a flow may, therefore, exhibit laminar secondary patterns, or change back and
forth between the laminar and turbulent modes.

On the other hand, for

Re > Re

XLaminar XTurbulent >

or even for equality of these two numbers, the turbulent flow can maintain itself, and hence
the transition is to turbulence.
The boundary-layer thickness in the turbulent flow may be expressed as [4]

8/x = 0.381/Re!,
and the velocity profile may be approximated by [4]

u = U(y/o)",
from which

h = (T)(U/O)(y/0)~*"
Hence

ha?/v = (0.381/7) Re¥* (a/8)*(y/0)~%",
and again, for y = a = §/2, (23) yields

0.02465 Re** = 530, or Re, = 260360.
More values for Re, are computed again under the assumption that a < §/2, i.e., that the
fluid particle is smaller than the thickness of the boundary layer. These values are also
presented in Table 2.
Comparison with published data
As pointed out above, transition to turbulence occurs only after the turbulent transition
Reynolds number becomes smaller than the laminar one. Application of this condition to
Table 2 indicates transition at about Re, = 500000, with a/6 = 0.4. The commonly used

values [4] are between 500000 and 107, and again the results obtained here seem quite
reasonable.
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3.4. Boundary layer in free convection on a vertical flat plate
The free-convection laminar-boundary-layer thickness may be approximated by [8]
8/x = 3.93Pr'2(0.952 + Pr)"* Gr;'*,

where Pr = v/a is the Prandtl number and Gr, = (gBATx*)/v* is the Grashof number. The
velocity profile may be approximated by [7]

u = Gr,(v/4) (8 /x)(y/d)1 — (y/OF,
from which

h = Gr'2[3.93 Pr'2 (0.952 + POY™P(v/4x)(1/8)[1 — (y/8)I[1 — (y/d)].
Hence

halv = Gr* (1/4)[3.93Pr~'7 (0.952 + PP (a/6)[1 — (¥/o)1 — (By/d)].

Inspection of the velocity profile and of this expression indicates that higher values of the
expression are obtained near y/é = 2/3, a/é6 = 0.04, which for air, i.e., Pr = 0.7, yields

ha’/v = 38 Gr'*-0.053 = 2 Gr!“.
Now (23) yields 2 Gr'# = 520, Gr, = 5 x 10°.

Comparison with published data

Published experimental data for this case [9] are between about 5 x 10® and more than 10°.
These values are also considered rather close to the one obtained here, more so if the values
of Gr!”? are compared instead of the values of the Grashof numbers themselves. However,
of all the examples considered here, this is only one where the computed values exceed the
experimental ones. When the experimental values are higher, one may wonder whether the
necessary perturbations were introduced during the experiments. In a case as the one here,
where experiments indicate lower criteria, some additional instability mechanisms may be
suspected to be involved. In this case the main suspect appears to be thermal instability [10],
superimposed on shear instability. This kind of cooperation has been shown to decrease the
stable domain of flows [11].

3.5. Flow around the forward half of a circular cylinder

Conditions are sought under which the flow around the forward half of a circular cylinder
remains laminar. The considerations in this example are limited to the forward half of the
cylinder in order to avoid the additional complications associated with the possibility of the
separation of the boundary layer.

As a rough approximation, the boundary layer around the cylinder is assumed to resemble
that on a flat plate, and therefore its length, starting at the forward stagnation point on
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Table 3. Computed and measured scales of turbulence in channel flow

Re y= 0.1 0.2 0.3 0.4
30800 h = 126.0 65.5 46.5 31.0

I, = 0.67 1.0 1.2 1.4

I = 1.75 2.25 2.4 24

i = 0.8-1.6 1.0-2.0 1.25-2.5 1.55-3.1
61600 h = 214.0 143.5 86.0 66.0

I, = 0.6 0.8 1.0 1.2

I = 13 1.4 1.45 15

I = 0.6-1.2 0.72-1.5 0.9-1.8 1.05-2.1

the cylinder, is just
x = (n/4)D,

with D the diameter of the cylinder. For this boundary layer, Example 3.3 gave the transition
Reynolds number as Re, = 500000. Hence

Re, = (4/m) Re, = 636600,
which is quite within the range of values quoted in the literature [4].

3.6. Turbulent flow in a two-dimensional channel

As a final example some details of the shear instability mechanism are illustrated, rather
than just the transition to turbulence as in the previous examples. Measurements taken
in experiments with turbulent flows in two-dimensional channels [12] are used to deter-
mine the scale of the turbulence. The shear rate A is obtained here by numerical differ-
entiation of the measured velocity profiles. Equation (23) is then used to determine
the size of the unstable fluid particle, which also gives the order of the size of the turbu-
lence. Values thus obtained, for two Reynolds numbers, are presented in Table 3,
which also contains values measured directly in the original experiments [12]. Com-
parison of these two sets of values in Table 3 again seems to rule in favour of the proposed
mechanism.

4. Discussion

A Lagrangian model for the local initiation of shear instability, which may lead to local
turbulence, has been presented. Six examples were presented in which this model did yield
acceptable numerical values. The importance of the concept of local turbulence and local
stability has been stressed in the introduction. With the indication that correct results may
be obtained, the model is expected to be useful.

It must be noted, however, that further work is required to better determine the role of
the local criterion in instability analysis. Shear instability is but one of many mechanisms
capable of inducing instability, and the interaction between several mechanisms is certainly
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possible. As already stated, the criterion is presented as a conjecture which is considered
sufficiently interesting even for just its indication of a simple unified explanation for a certain
number of flows.
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